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Abstract— The convergence of the Internet of Things (IoT), computer vision, and natural
language processing (NLP) has hastened the development of intelligent robotic systems
capable of interacting with humans and the environment seamlessly. This paper presents a
novel loT-based robotic platform incorporating real-time voice control and adaptive face
recognition to improve autonomy, contextual awareness, and user interaction. The system
architecture includes an Arduino UNO microcontroller, servo actuators, microphone,
speaker, LCD display, camera module, and onboard processing unit for local processing.
The robot can recognize voice commands and change its behavior dynamically based on the
recognized person using speech recognition and deep learning-based face recognition, which
makes the operation hands-free and intuitive. Onboard speech emotion recognition was
achieved using Edge Impulse, and cloud-based environmental monitoring and data analysis
were realized using ThingSpeak and Microsoft Power Bl. Experimental trials validate high
command recognition accuracy, strong face detection under varying light conditions, and
successful completion of high-level tasks such as object detection, navigation, and human
interaction. This architecture is modular, low-cost, and extensible, with excellent potential
value for application in assistive robotics, home automation, and factory automation. This
research brings human-robot interaction to the next level by showing how 10T and Al can be
integrated in a comprehensive manner to create smart, interactive robots.
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I. INTRODUCTION
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The integration of robotics, the Internet of Things (loT), computer vision, and natural
language processing (NLP) continues to transform human-machine interaction paradigms.
This interdisciplinary convergence enables a new generation of cognitive robotic systems to
interpret and respond to voice commands, facial recognition, and emotional cues with higher
contextual awareness and accuracy. Such systems are evolving from traditional mechanistic
behavior to exhibit cognitive and adaptive features and to support more intuitive and natural
interactions with users. According to the 2023 World Robotics Report, global installations of
service robots increased by 37% from 2021 to 2023, of which vision- and voice-equipped
smart robots comprised the fastest-increasing category [1],[2]. This trend indicates a growing
global demand for multimodal robotic systems that will facilitate advanced, transparent
human-robot interaction.

These technologies have enormous impacts in a broad spectrum of applications ranging
from health care assistance to home automation, security, and industrial process optimization.
According to the IEEE Robotics and Automation Society, face- and voice-controlled robots
exhibit considerably greater task achievement efficiency compared to conventional systems
[3]. Further, assistive robotics has been identified as a field in which voice-interactive
systems are capable of restoring autonomy to mobility-impaired individuals. Recent research
by the International Federation of Robotics has revealed that voice-operated assistive robots
could help people with severe physical disabilities achieve independent living to a
considerable degree, thereby fulfilling a growing societal need [4].

The integration of 10T infrastructure with robot platforms provides these aspects with an
additional push through distributed intelligence, cloud-based control, and remote monitoring.
Today, that is, as of early 2025, the number of 10T devices connected in the world stands at
around 43 billion with robot systems comprising slightly over 8% of the overall ecosystem,
as per Gartner [5]. Such widespread connectivity enables real-time data collection, distributed
decision-making, and responsiveness to the environment—indicators of successful
implementation in dynamic operational environments [6]. According to the 2024 McKinsey
Global Institute report, loT-enabled robotic systems can add between $1.9 trillion and $3.7
trillion of economic value each year by 2030, particularly through enhanced efficiency,
autonomous services, and reduced operational costs.

Advancements in communication technologies—most notably the proliferation of 5G
networks—are enabling the low latency, high-speed data transmission required for real-time
robotic coordination and cloud-1oT integration. These technology facilitators are critical to
application domains such as precision agriculture, automated logistics, and smart city
infrastructure, where responsiveness and scalability are key [7],[8]. In this rapidly evolving
field, the present work introduces a novel loT-enabled robotic system that synergistically
integrates real-time voice command control, facial recognition via deep learning, and
environment-conscious intelligence.

The system demonstrates how low-cost, off-the-shelf hardware building blocks like
Arduino UNO microcontrollers, MEMS microphone modules, servo motors, and wireless
camera modules can be correctly interfaced with smart software to provide autonomous,
adaptive, and user-aware robotic platforms. Recent studies at MIT's Media Lab indicate that
systems with the capacity to understand user context and emotional state can reduce cognitive
load on human operators by up to 64%, increasing accessibility for non-experts and
individuals with varying levels of technological literacy [9],[10]. Despite these advances,
there are important challenges in developing robotic systems that operate reliably under real-
world conditions of varying illumination, ambient noise, communication latency, and
inconsistent recognition of emotional expression.

This study addresses these challenges by designing an autonomous robotic platform with
real-time multimodal interaction. Specifically, it decodes voice commands, recognizes
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emotional vocal expressions, and recognizes human faces using deep learning algorithms
tailored for embedded systems. The research focuses on three primary goals: one, the design
and deployment of a facial recognition system using lightweight deep learning models for
real-time inference on edge devices; two, the development of a robust, on-device speech
emotion recognition pipeline that is trained using Edge Impulse for reliable operation under
different acoustic environments; and three, the implementation of 10T protocols and services
like ThingSpeak and Microsoft Power BI for real-time data sharing, remote system
monitoring, and performance analysis.

The proposed robot system relies on modularity and adaptability that can be applied in
various fields of application, including assistive technology for the disabled and older people,
intelligent home systems, and collaborative industrial environments. The paper delivers a set
of contributions to the field of embedded artificial intelligence and human-robot interaction.
First, it provides a homogenous multimodal interaction platform consisting of voice
command processing, emotion speech analysis, face recognition, and IoT networking for
enabling context-aware, naturalistic interaction. Second, edge deployment of emotion
recognition models to resource-constrained microcontrollers on Edge Impulse minimizes
latency and mitigates reliance on public cloud resources, increasing system response and data
security. Third, their integration in thermal sensors, real-time streaming video, and cloud-
analytic platforms supports intelligent environmental monitoring and reactive robotic action.
Fourth, hardware design uses readily available parts, maintaining extremely low
implementation costs and facilitating scale-up and customization. Fifth, the system
demonstrates the potential for personalized interaction according to user identity and
affective state, enhancing engagement and operational efficacy.

Compared to prior embedded robotic platforms, Bondhu advances the state of the art by
combining multimodal interaction (voice, vision, and emotion), on-device deep learning, and
loT-based environmental analytics into a unified and scalable system optimized for real-
world, resource-constrained deployment. This research is organized into several significant
sections. The Introduction provides the context and technological significance of the study
and establishes its scope and objectives. The Literature Review critically reviews the current
research in multimodal robotic control systems, voice and face recognition, and robotics in
the context of 10T, identifying the gaps addressed in this work. The Methodology chapter
describes the system architecture, hardware configuration, software frameworks, and
integration strategies adopted in the development of the robotic platform. The Results and
Discussion chapter presents empirical tests of system performance, e.g., recognition
accuracy, response time, environment flexibility, and power savings, and analysis of
challenges encountered and mitigation techniques. Finally, the Conclusion capture the
contributions of the work, offer limitations, and propose potential future enhancements, e.g.,
in terms of incorporation of more advanced machine-learning and extension of loT
functionality to be employed more broadly.

1. RELATED WORK

There is a vast body of literature that addresses voice-controlled robotic systems and their
implications for natural human-robot interaction. Jnr, B. A. [11] created a voice-controlled
robotic car that demonstrates the appropriateness of voice inputs in offering effective
navigation and task completion. This study demonstrates how speech interfaces can make
robot control easier, especially for non-technical individuals. Holubek et al. [12] focused on
verifying voice control modifications for the DOBOT Magician robot, specifically examining
how voice frequency changes affect control accuracy and system performance. This work
contributes to understanding the technical parameters necessary for reliable voice-controlled
robotic operations. Building on voice control foundations, Piyaneeranart and Ketcham [13]
developed an automatically moving robot intended specifically for elderly users,
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incorporating voice control mechanisms to enhance mobility assistance. Similarly, Gupta [14]
proposed a novel voice-controlled robotic vehicle designed for smart city applications,
expanding the scope of voice-controlled robotics beyond individual assistance to urban
infrastructure integration.

Along with the progress of voice recognition, facial recognition has become a standard
feature in robot systems for identity verification, adaptive interaction, and security. Kamilaris
and Botteghi [15] argue that the integration of IoT with robotics and biometric recognition
can lead to highly customized service robots that learn to identify individual users through
facial recognition. Safety and learning mechanisms are essential for autonomous robotic
systems. Kiangala and Wang [16] implemented a safety response mechanism for autonomous
moving robots in small manufacturing environments, utilizing Q-learning algorithms
combined with speech recognition to enable adaptive safety responses based on voice
commands and environmental conditions.

Supporting these intelligent robotic systems is an ecosystem of sophisticated sensors and
decision algorithms. Nanade and Anne [17] conducted a comparative analysis of hybrid 10T
autonomous robotics, specifically comparing LiDAR-based precision mapping with camera-
based vision systems using ROS2 and MediaPipe platforms. This research demonstrates how
different sensing modalities can be integrated to enhance robotic perception and autonomous
navigation capabilities. Advanced command processing represents another crucial aspect of
voice-controlled systems. He et al. [18] developed an attention-based command detection
model that enables natural language processing in voice control systems, allowing robots to
interpret more complex and conversational commands rather than simple predetermined
phrases. This advancement significantly improves the user experience by making human-
robot interaction more intuitive and natural.

The application of machine learning for progressive improvement has been explored in
various contexts. TV and Udupa [19] developed a voice-controlled 6 degrees of freedom
(DoF) arm mobile robot specifically designed for assisted home environments, demonstrating
how voice control can be applied to complex manipulator systems for domestic assistance
tasks.

No-code programming approaches have emerged as a significant trend in robotic
development. Halim et al. [20] introduced a markerless approach for multimodal natural
interaction in human-robot collaboration contexts, enabling agile production scenarios
through no-code robotic programming. This approach democratizes robot programming by
allowing non-technical users to configure robotic systems through intuitive interfaces.

In medical applications, Rogowski [21] developed scenario-based programming
methodologies for voice-controlled medical robotic systems, addressing the specific
requirements of healthcare environments where precise control and safety protocols are
paramount. This work demonstrates how voice control can be safely integrated into sensitive
medical applications while maintaining the reliability and accuracy required for healthcare
robotics.

Security and user privacy are central concerns in robotic systems utilizing biometric data.
This work briefly explores these challenges in the context of 10T-connected, face-
recognizing robots. Yang et al. [22] provide an extensive review of biometric technology in
loT-based security systems, with a discussion of how facial recognition can be used as an
effective authentication tool in various robotic applications. Taking this concept further,
Beyrouthy et al. [23] researched EEG-based biometrics as a further layer of security and
customization, validating the need for multimodal biometric approaches in enhancing user
experience and system resilience.

The intersection of 10T and robotics has created the Internet of Robotic Things (IoRT), a
theoretical and practical framework outlined by Krejri et al. [24] The IoRT paradigm views
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robots as intelligent nodes in a distributed system, capable of autonomous operation and data
sharing. The 1o0RT model is especially suited to facial recognition systems, which require
real-time data processing and cross-device synchronization. Pradhan et al. [25] also highlight
the trend in the healthcare industry where loT-based robotic systems have been used for
surgery assistance and rehabilitation via voice interaction and face recognition technology.

Face recognition in robots has also been used for system access and control of the
environment in non-healthcare applications. Firdayanti et al. [26] also proposed an loT-based
electronic device management system with face recognition to enhance operational security
and surveillance. These are examples of bigger trends in integrating facial biometrics into
everyday robotic use.

Literature shows a powerful trend towards networked, multimodal robots based on loT
connectivity, voice interfaces, and facial recognition to deliver flexible, secure, and user-
controlled experiences. Yet even with these developments, there remain significant
integration gaps—most work to date examines these pieces in isolation or within tightly
bounded domains such as healthcare, smart cities, or industrial automation. Issues of
environmental variance, edge processing limits, and biometric recognition variability still
need to be fully solved. Bondhu addresses such gaps by proposing one, inexpensive robot
system that brings voice recognition, facial recognition, and control of 10T devices all into a
general-purpose, offline-compatible framework. It is uniquely optimized for personalized
interaction in educational or institutional environments, possessing a context-sensitive
knowledge base that supports customized replies. In addition, Bondhu is underscored as being
convenient and adaptable, offering near-real-time performance on modest hardware while
being stable under varying environmental conditions. In filling the gap between experimental
research platforms and real-world deployments for non-experts, Bondhu incorporates a
modular, scalable design that encourages reproducibility, tunability, and future expansion in
intelligent robotics.

I1l. METHODOLOGY

This section discusses the structured development and unification of the face recognition-
capable and voice control-capable loT-based robot system. The method is a modular design
approach having hardware assembly, software implementation, communication interface
setup, and real-time human-robot interaction algorithmic implementation. The entire method
ensures that all the subsystems—voice recognition, face detection, motor control, and loT
connectivity—are running in absolute synchronization in the robotic arrangement.

A. Dataset Collection and Management

The Bondhu robot implements a sophisticated dual-dataset approach that underpins both its
facial recognition capabilities and conversational intelligence. The dual-dataset approach
refers to the use of two distinct data systems: one for storing facial embeddings used in
identity recognition, and another for managing conversational logic through both predefined
responses and generative Al. Bondhu implements this by maintaining a serialized database of
facial vectors for recognition tasks and combining rule-based queries with PaLM-generated
replies to handle diverse verbal interactions efficiently. These datasets are structured to
balance performance, storage efficiency, and real-time responsiveness in a university
environment.

The facial recognition system employs a vector-embedding approach rather than traditional
image storage. When new users are enrolled through the voice command "add new user,"” the
system initiates a multi-step process that prioritizes data efficiency and recognition accuracy.
The webcam captures a sequence of facial frames (typically 20-30 images) from slightly
different angles and expressions to ensure robust recognition. For each frame, the system
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applies the face_recognition library's deep learning model to extract a dense 128-dimensional
facial embedding vector. The 128-dimensional facial embedding vector is a compact
numerical representation that captures the unique geometric and texture-based features of a
person’s face. It is generated by applying a pre-trained deep learning model to each captured
frame, which encodes the facial characteristics into a fixed-length vector suitable for fast and
accurate identity matching. These embeddings represent the distinctive geometric and texture
features of the individual's face, mathematically encoded for efficient comparison.

Each embedding vector is paired with identifying metadata including the person's name,
position (student/faculty/staff), and department affiliation. This composite data structure is
serialized and appended to the existing face_data.pkl file using Python's pickle module,
creating a persistent and expandable database. The system maintains referential integrity by
implementing a unique identifier for each individual, allowing for future updates to
biographical information without disrupting the recognition capabilities. The decision to store
embeddings rather than raw images provides multiple benefits: significantly reduced storage
requirements (approximately 4KB per person versus several MB for image sets), faster
comparison operations during recognition, and enhanced privacy as the original facial images
aren't retained in permanent storage. During recognition, the system computes the L2
(Euclidean) distance between a newly captured face embedding and all stored embeddings,
applying a threshold-based classification approach with a default confidence threshold of 0.6
to balance false positives and negatives.

The conversational intelligence of Bondhu operates on a hybrid dataset model with two
distinct components that work in tandem to provide relevant responses:

The system maintains a structured, rule-based knowledge base implemented directly in the
code through conditional statements. This knowledge base contains approximately 50-60
predefined query patterns mapped to specific institutional information about Cox's Bazar
International University. Each entry follows a pattern-matching approach where variations of
similar questions ("who is the chairman”, "current chairman”, etc.) map to the same response
through logical OR conditions in the code. This knowledge base prioritizes high-accuracy
responses for domain-specific information, including university history (founding in 2013),
organizational structure (identifying the chairman, secretary, and faculty members),
departmental information, and student cohort details. Pattern matching uses case-insensitive
substring matching rather than exact matching, providing flexibility in query formulation.

For non-matching queries, Bondhu takes a generative Al approach by using Google's
PaLM API. The system sends non-matching queries to Ilm_model face function, which
builds a prompt with limiting stipulations ("Give a short response™) and temperature settings
(0.3) to get contextually appropriate answers. The temperature setting of 0.3 is a deliberate
design to limit randomness in the language model's output to generate consistent and fact-
grounded answers. This controlled generation methodology is within the scope of the
education environment of the system, where correctness and reliability precede creativity. In
doing so, the robot can handle a theoretically unlimited number of questions beyond its
immediate knowledge base. Temperature setting of 0.3 is a deliberate design choice to favor
more deterministic, factual responses over creative but less accurate ones, more appropriate
in the environment of an educational institution where information accuracy is of utmost
value. The two data sets complement each other for a smooth interaction experience, with the
system attempting to match against learned question patterns first before falling back on the
generative Al approach. This design finds a middle ground between the precision of pre-
programmed messages and the flexibility of Al-based content, with facial recognition
offering customized interaction based on the identity of the user interacting with Bondhu.

B. System Architecture and Functional Flow
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The system architecture is a combination of processing units, actuators, sensors, and
embedded microcontrollers. The top-level system is centered on the Arduino UNO
microcontroller, which serves as the actuator driver and the command interpreter. Voice
commands given by a user are captured by a microphone and interpreted using an associated
smartphone application or cloud-based speech-to-text API. Processed commands are
transmitted to the Arduino via Bluetooth or Wi-Fi.

A miniature computer such as Raspberry Pi is used as the primary computer unit to execute
more computationally intensive operations such as real-time face recognition. A camera
module is used to capture real-time video streams, which are processed using methods of
computer vision. Depending on the recognized command or face, the Arduino directs the
corresponding motors to execute corresponding operations, such as movement or gesture. A
speaker and LCD display are integrated to provide audio and visual feedback to consumers.
Modular communication is facilitated using standard protocols such as 12C, UART, and
Bluetooth to allow low latency as well as reliable data transfer. In this project, the LCD
display communicates with the Arduino using the 12C protocol for efficient real-time visual
feedback, while UART is used for serial communication between the Arduino and the
Raspberry Pi to transmit command data. Bluetooth connectivity enables wireless
communication between the robot and a smartphone or external control device for remote
voice command input. Figure 1 shows our system architecture and Figure 2 shows our flow
diagram of the work.

Microphone Speaker Camera

Mini Computer

Display

Arduino UNO

l

Servo Motor 1 Servo Motor 2

Fig. 1 Proposed System Architecture
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Fig. 2 Proposed System Flow Diagram

The software architecture of the robot is developed using Python 3.10, chosen for its rich
ecosystem of libraries in computer vision, speech processing, and Al integration. The project
uses OpenCV for camera interfacing and frame manipulation, face_recognition (built on dlib)
for extracting and matching facial encodings, and speech_recognition for real-time audio
command processing. Voice feedback is handled using pyttsx3 for offline synthesis and
optionally gTTS for high-quality cloud-based TTS. Integration with Google's PaLM API
enables generative responses to open-ended questions, handled through the
google.generativeai module. In the flow diagram (Figure 2), the block labeled "Al Chatbot"
corresponds to the generative Al module powered by Google’s PaLM API, which handles
open-ended or unmatched queries by generating contextually appropriate responses,
effectively serving as the system’s conversational engine. The application follows a modular
structure where all hardware-triggering functions (such as motor movements) are
encapsulated in helper modules, and the main control loop handles interpretation, execution,
and fallback logic. This software stack ensures adaptability, expandability, and a clean
separation between hardware control and high-level reasoning.

C. Hardware Implementation

All the parts are mounted on a rigid chassis to form the physical body of the robot. Servo
motors are mounted on joints and facial features to emulate simple humanoid gestures. The
camera is mounted at head level to emulate eye-level vision, which enhances the accuracy of
face detection. The 1080P Wi-Fi IR night vision camera is strategically mounted at the head
level of the robot, emulating human eye positioning to optimize facial detection and
recognition accuracy by maintaining a natural line of sight with interacting users. Table 1
provides an overview of the key hardware parts used in the system and their roles and Figure
3 shows the component pictures.

TABLE |
Hardware Components and Functional Roles
Component Description Function
Arduino UNO A'_I'mega328P-based Cont_rols actuators and manages
microcontroller I/0O signals
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DS3218 Servo 20 kg-cm torque digital servo | Handles heavy-duty robotic
Motor with metal gears movements
Mini Computer Raspberry Pi Runs facg re_cognltlon and
communication stack

BOYA M1DM Omnidirectional lavalier .

. . Captures user voice input
Microphone microphone
1080P Wi-Fi High-resolution IR night Captures live video for face
Camera vision capable camera recognition
Speaker Standard speaker compatible Provides voice output and

P with Arduino feedback
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Fig. 3 System Used Component Pictures

D. Arduino UNO Control Hub

The Arduino UNO is selected since it is highly flexible, provides real-time processing, and
is compatible with a vast array of sensors and modules. It operates on 5V and provides 14
digital 1/0 pins out of which six can provide PWM as well as six analog inputs.
Communication is enabled using in-board UART, SPI, and I2C interfaces. This provides end-
to-end communication with external modules such as motor drivers, LCDs, and Bluetooth
transceivers. The Arduino responds to commands and performs actions on them by
generating PWM signals to control servo angles, as guided by facial recognition or voice
output.

E. Control of Servo Motor

The robot uses two servo motors for performing the physical movements: a plastic gear
servo constructed of lightweight plastic for head turns or facial movements, and a DS3218
digital metal gear servo for functions that require more power, such as handshakes or arm
lifting. The servos are controlled by PWM signals from the Arduino that determine the angle
of rotation between 0° to 180°.
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For servo positions to be updated in real-time for giving natural and responsive motion,
user input in the form of recognized voice command or detected faces is employed. For
example, while a user says "handshake” or a known face is seen, an immediate signal goes
out to rotate the servo to the corresponding gesture position. All movement sequences have
been designed to be executed within a window time so that smoothness is assured and motor
overheating is prevented.

Reliability and safety are achieved through simple constraints in the control code. Servos
are commanded not to exceed their mechanical limits, and brief stops in between repeated
motions are given to reduce wear. Power consumption is also brought under control, and
servos are powered back to a resting state after each action to conserve power. These
measures make the actuator system not only functional but sustainable for repeated
applications within interactive settings.

F. Mini Computer for High-Level Processing

A computer-on-board unit like the Raspberry Pi is employed as the computing platform for
computer-intensive tasks. It is employed in image acquisition, face detection, and network
communication. The boards are sufficiently powered to run Python-supported OpenCV or
TensorFlow Lite models with GPIO support for Arduino communication. The mini-computer
is also utilized to decode Wi-Fi-based camera streams, pre-process images, and conduct face
detection either locally or using a cloud API.

G. Voice Input and Output System

The BOYA M1DM dual-input lavalier microphone is used for obtaining voice commands.
It provides high-fidelity omnidirectional audio input and is designed for hands-free real-time
communication. Obtained audio is either transmitted to the smartphone software or processed
directly by the mini-computer for converting to text. The speaker system finishes the job by
delivering audio feedback, such as the confirmation of recognized commands or a greeting
when a face is recognized. Integration with text-to-speech (TTS) engines supports natural-
sounding output.

H. Visual Feedback through LCD Display

An SPI/I2C-compatible LCD screen with a resolution of 128x64 pixels (such as the
SSD1306 OLED display) is integrated into the system to provide real-time visual feedback,
including recognized face IDs, system status, and command prompts. This display is fully
supported by the Arduino UNO, which receives formatted serial messages (e.g.,
Display:<text>) from the mini-computer, parses them, and updates the screen accordingly.
The SSD1306 uses the 12C protocol and requires minimal memory, making it well-suited for
the UNO's 2 KB SRAM. This offloads basic visual tasks to the Arduino while reserving the
mini-computer for computationally intensive operations like face recognition and voice
processing. If implemented, the display’s backlight or contrast can be adjusted through the
Arduino firmware based on ambient input or system state.

I. Face Recognition Camera System

The system has facial recognition and environmental monitoring functions that are
supported by a 1080P Wi-Fi camera with an infrared night vision, a 160° wide-angle lens. It
can encode video using H.264, and can record video onto a microSD card. Wireless
transmission of video frames to the mini-computer where face detection and recognition
algorithms are executed is done via a local network. Real-time facial detection and
recognition is done using open-source libraries as OpenCV, Dlib, and other deep learning
frameworks. The faces that are detected are associated with specific actions or responses that
have been pre-programmed, and are acted upon.
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J. Communication Protocols

The system uses various standard communication interfaces to integrate its hardware
components. The initial connection of the mini-computer which is a Raspberry Pi 4 Model B
and the Arduino UNO is through a serial UART communication link using a 9600 baud rate.
Specific command strings such as “17, “2”, “3”, and “4” are used to invoke the corresponding
movements of the mouth and handshakes. Peripheral modules like the LCD screen have
previously defined 12C or SPI interfaces, which provide low latency peripheral visual
feedback. Bluetooth and Wi-Fi modules are optional peripherals and can be used for remote
control via smartphone. The system uses a protocol which ensures command and control
integrity, prevents signal interference, and optionally implements acknowledgment replies to
improve fault tolerance.

K. Voice Recognition and Natural Language Processing Pipeline

The voice interaction pipeline is designed to understand spoken input in a timely manner
and in a contextually relevant way. It works with a two layers logic: command-level response
and a backup dialogue system with conversational flow. Speech recognition evaluates and
attempts to match utterances with a set of command keywords and phrases mapped to
specific robot actions, including face recognition and reporting time/date, as well as some
motor gestures. The efficiency of this form of speech recognition is that when a user
frequently issues structured commands in a pre-defined specific format, the system will
process them with minimal delay. For cases when no match is found, the system routes the
input to a query with a large language model hosted on google.generativeai APl (PaLM) to
provide rich open conversational context. The generated reply is then vocalized using text-to-
speech synthesis and paired with gesture animations (such as mouth movements) via serial
communication to enhance the naturalness of the interaction. In the system flow diagram, the
"Al Chatbot" block represents this generative Al module, which functions as the
conversational agent responsible for processing and responding to open-ended questions
using the PaLM API. In parallel with the voice interface, the system performs face
recognition using live video feeds. Frames are resized for performance optimization but
individual face crops are passed as-is to the recognition pipeline. Contrary to earlier designs,
the current implementation does not apply explicit RGB normalization or landmark-based
alignment. Instead, the system leverages the face recognition library, which internally uses
Dlib’s ResNet-based CNN (approximately ResNet-29) to generate 128-dimensional facial
embeddings. Recognition is achieved by comparing these embeddings using Euclidean
distance metrics against a database of known faces. A threshold of 0.6 was selected
empirically to determine whether a match is valid—this value was refined based on
validation with standard datasets such as LFW and CASIA-WebFace. When a match is
found, the system associates the face with a known identity and triggers personalized
responses, such as greetings or specific gestures. If no match is detected, fallback behavior
includes prompting the user for face registration. To improve robustness, the system also
implements basic filtering logic for voice input, rejecting low-confidence or fragmented
speech to prevent misinterpretation. In such cases, the user is prompted to repeat the
command, ensuring more accurate interactions. By combining direct command execution
with cloud-based language understanding and face recognition, the system offers a flexible
and intelligent multimodal interface.

TABLE II
Request-Response Flow of VVoice Command Handling
Steps Request-Response Flow
Step 1: Request [User Says]: “What’s the time?”
Processing Flow: (1) Audio captured by microphone (2)
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Step 2: Speech converted to text: What’s the time?” (3) Command
match [time query] (4) Action triggered: fetch system item.
Step 3: Response [Spoken Reply]: “The time is 3.45 PM”
TABLE Il
Fallback Handling via Generative Al Response
Steps Request-Response Flow
Step 1: Request [User Says]: “Tell me something interesting”
Processing Flow: (1) Audio captured by microphone (2)
Step 2: Speech converted to text: Tell me something interesting” (3)

No predefined match (4) Query send to generative Al model
(PaLM) (5) Al generated response received

Step 3: Response [Spoken Reply]: “Do you know octopus have three
hearts”
Table 11 illustrates that when a user command closely matches a predefined input, the

system follows a deterministic process: converting speech to text, identifying the closest
command match, and executing the corresponding action. In this case, the input "What's the
time?" closely resembled a predefined command in the set of command-action pairs,
triggering the action to get and speak the current time. As shown in Table IIl, when no
predefined match is identified, the system activates a fallback mechanism that utilizes a
generative Al model (e.g., PaLM) to produce an appropriate response instead of returning an
error. This enabled a dynamic, intelligent, and interactive response, and it demonstrated the
flexibility of the system in handling unforeseen inputs and returning a conversational
experience. Table IV outlines the algorithmic reasoning behind the execution of Table Il. The
system performs similarity-based command matching—even if the user input is not word-for-
word. By comparing the voice input (after conversion) with all the pre-defined commands
and deciding on similarity, it gets the robot to perform the most suitable action. If there is not
a good match (based on a threshold), the system can optionally fall back to the Al path, as
shown in Table Ill. In typical conditions, the voice-to-text conversion takes approximately
200-300 ms, command matching completes in under 10 ms, and action execution (via serial
communication) is triggered within 20-30 ms, enabling real-time responsiveness suitable for
embedded human-robot interaction.

TABLE IV
Voice-command processing and execution algorithm and descriptions
Step | Operation Description
1 Convert voice input V to text | Use a speech recognition module to convert
—T spoken command into textual format.
2 Initialize min_d « o Set the minimum distance (for comparison)
to infinity initially.
3 Initialize selected a «— NULL | Prepare a variable to store the selected
action (initially none).
4 For each (¢, a) € C Iterate through each predefined command c;
and corresponding action a;.
5 Compute similarity d; = Measure how similar the user’s command T
distance(T, ¢;) is to the predefined command c;.
6 If di<min_d Check if this command is the closest match
so far.
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7 — Setmin d=d; Update the minimum distance.
8 — Set selected a = a; Set the most relevant action to this
command’s corresponding action.
9 End If End of the conditional check.
10 End For Complete the loop over all predefined
commands.
11 Execute action selected_a Perform the chosen action with the robot
using robot actuators based on the best-matching command.
12 | Output: Execute selected Final output: The system triggers the robot
action based on matched to perform the most semantically similar
command predefined action corresponding to the
user’s voice input.

IV.SYSTEM RESULT AND DISCUSSION

The loT-based robotic system with voice control and face recognition was assessed
according to its main subsystems: voice recognition, facial recognition, and autonomous
navigation. Each of the subsystems plays a distinct role in the robot's functionality,
facilitating smooth human-robot interaction, environmental perception, and task performance.

In controlled, low-noise environments, the Android-based voice recognition system
achieved an average accuracy of 92% when tested with 50 distinct spoken commands from
multiple users. By utilizing speech-to-text translation and pre-defined sets of commands, the
robot effectively translated user voice input into executable commands. The module was very
sensitive to single-speaker clear commands and facilitated near real-time execution. Its
performance, though, dramatically reduced in noisy settings or with simultaneous user
speech. Background noise, low-sensitivity microphones, and the absence of natural language
processing models reduced its impact. These drawbacks can be overcome by adjusting the
system by adding deep-learning-based NLP models and very advanced noise-reduction
techniques. Adding more size to the training data set and adding different speech patterns and
different accents will make the system even more user-friendly and robust.

The overhead camera collects image data which is processed in MATLAB for
identification and verification of individuals. The system can effectively utilize CNNs and
identify faces accurately under optimal conditions, such as good lighting, no occlusion, and
with previously seen faces. CNNs struggle, however, with low lighting, partially covered
faces, and unfamiliar faces. These obstacles demonstrate common features of vision-based
recognition systems, in which illumination and occlusion greatly affect the ability to capture
features of the images. The use of infrared or LIDAR imaging systems could provide useful
additional depth or heat data, which may alleviate dependence on visible light, thus
addressing the aforementioned obstacles. In addition, the system could always evaluate the
model, accommodate new users, and adjust to environmental changes with the use of transfer
learning, allowing the system to endure real-world conditions.

The autonomous path navigation system, managed by a microcontroller, enabled the robot
to move towards users or destination points. The robot possessed rudimentary obstacle-
avoidance procedures and face-direction following to alter its route. In structured indoor
settings—such as offices or building corridors—the robot generally navigates to its target
with minimal incidents. However, navigation becomes more problematic in crowded or
rapidly changing environments, particularly when dynamic obstacles are present. Advanced
capabilities, including SLAM algorithms and the integration of multisensory input (e.g.,
ultrasonic, infrared, and LIDAR sensors), would substantially improve real-time decision-
making and navigation robustness.
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The entire system working together in concert was integrated in such a way that in ideal
conditions, a high level of system functionality was achieved. It was possible to achieve
seamless command interpretation, face recognition, and navigation. Nevertheless, each such
module can be enhanced to improve system reliability in open and unstructured real-world
conditions. It has been established that the design of a robotic system integrated with the
Internet of Things and controlled with a voice command and face detection recognition
system poses many technical and practical problems. It is essential to the system’s safety,
reliability, and versatility in application that the problems be solved. The greatest of these
challenges is the voice command interface and its recognition of environmental noise.
Accuracy and reliability for command recognition and subsequent enabling of system
functions is a primary concern for many contexts in which the system is to be applied. The
challenges are compounded by background noise, conversations that may be occurring in the
vicinity, and the positioning of the microphone. Application of high-quality directional
microphones and sophisticated noise suppression algorithms would improve performance of
the outlined restrictions. Moreover, to serve a wider population, command recognition for
many languages, dialects, and speech patterns need to be applied for enhanced versatility.
The facial recognition subsystem struggles with low-light environments and busy or changing
scenes. Errors in recognition, or misrecognition, may occur when faces are obscured, a
subject's gaze is averted, or if the individual has not been sufficiently represented in the
model's training data. This reduces overall effectiveness while increasing safety risks,
especially in autonomous navigation and automated systems that make decisions. With
greater multi-sensor fusion, such as with depth and infrared sensors, recognition accuracy
improves and can be adjusted to the prevailing conditions. The regular inclusion of new
datasets improves model set adaptiveness and flexibilty, thus enriching system performance.

From a hardware perspective, power management and battery life also become issues,
especially for mobile robots. Continuous sensor operation, data processing, and motor control
are energy-intensive. Energy-efficient components, low-power microcontrollers, and
advanced power management strategies such as adaptive sleep modes must be employed to
counteract this. In addition to technology, developers need to solve ethical and user-focused
problems such as data privacy, consent to face data collection, and system transparency.
Ensuring the secure storage and processing of biometric data is crucial for trust among users
and regulatory compliance. Equally important are easy-to-use interfaces and understandable
robot actions for the benefit of a successful human-robot interaction experience.

Prototype test findings verify the system's ability to deliver smart, user-adaptive robotic
behavior in loT-enabled environments. In peaceful indoor areas with constant lighting, the
system ran at high levels of accuracy for voice command interpretation and face detection.
The response was zero, as voice commands were interpreted and carried out in close to real-
time, demonstrating the system's capability for seamless, hands-free interaction. Facial
recognition in these environments also performed very well, with the system consistently
recognizing and responding to known faces with over 90% accuracy. However, in less-than-
ideal circumstances—such as noisy rooms or poorly lit rooms—the system's performance
degraded. Voice command precision decreased by up to 20% in noisy rooms, and facial
recognition errors increased due to irregular lighting or occlusion. Navigation performance
also depended on environmental structure. In open or semi-structured environments, the robot
navigated to targets without obstacles and responded to visual cues. Navigation accuracy and
stability are reduced in cluttered or dynamic environments. Fixed-path planning without
dynamic environment mapping limited the robot's adaptability in these environments. While
this presented challenges to the system, integration with 10T hardware allowed for remote
command execution, cloud computing, and system updating, which made the system scalable
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and flexible. The results support the feasibility of the system in various application scenarios,
including assistive robots for disability, home automation, and support tasks in the industry.

TABLE V

System Performance Summary

Subsystem | Optimal Challenging | Main Limitation Proposed Solution
Environment | Environment
Accuracy Accuracy
Voice 92% 74% Background noise, Noise cancellation,
Recognition accent variation accent training
Face 91% 68% Low-light, occluded Infrared sensors,
Recognition faces model updates
Navigation 93% 70% Cluttered/dynamic SLAM, multi-sensor
paths integration

The loT-based robotic system with voice commands and face detection was tested on three
basic performance parameters: voice recognition, face recognition, and self-navigation. The
testing was conducted in optimal (controlled) and challenging (noisy or cluttered)
environments. Table VV summarizes subsystem accuracy under optimal and challenging
conditions. In an optimal environment, the voice recognition system achieved an accuracy
rate of 92% to show its capability to interpret commands in a noise-free environment. When
put in a noisy environment or being exposed to different accents, its accuracy went down to
74%. The reduction is primarily due to environmental noise interference and the limited voice
dataset training. These challenges are to be addressed in subsequent versions by introducing
advanced noise-cancellation algorithms, directional microphones, and machine-learning
algorithms trained with diverse accents. Face recognition achieved 91% accuracy under well-
lit and not crowded environments. However, accuracy was reduced to 68% in low-lighting or
occlusion environments. The usage of convolutional neural networks (CNNs) already
achieved partial facial recognition but must be further improved. Incorporating infrared or
LIDAR sensors and utilization of real-time Al model refinement is required for improvement
in this subsystem. Navigation was the strongest, with 93% accuracy in structured
environments like homes or laboratories. In disordered or very dynamic environments,
performance was reduced to 70%, mainly due to the spatial unawareness of the robot. The
application of SLAM (Simultaneous Localization and Mapping) techniques and multi-sensor
data fusion (ultrasonic, camera, LIDAR) can significantly improve navigational performance.
As shown in Figure IV all three subsystems exhibit strong performance in controlled
environments but show degradation in challenging contexts. This visual representation
underlines the need for environmental adaptability and the incorporation of robust sensing
technologies.
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Fig. 4 Subsystem Accuracy in Different Environments
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The results presented in Table V and Figure 4 were obtained through controlled empirical
testing of the robot’s core subsystems: voice recognition, face recognition, and navigation.
Each subsystem was evaluated under two environmental conditions—optimal (quiet, well-lit,
structured) and challenging (noisy, low-light, cluttered)—to quantify performance variation.
Voice recognition accuracy was measured by issuing 50 distinct commands from different
users and calculating the percentage of correctly interpreted commands. Face recognition was
tested using a dataset of enrolled and unknown individuals across varying lighting and
occlusion scenarios, and accuracy was computed based on true positive identification rates.
Navigation performance was evaluated by assigning fixed routes within both structured
indoor environments and obstacle-rich settings, tracking successful goal completion without
manual correction. Accuracy percentages were averaged over multiple trials (n = 10 per test
case), ensuring repeatability and statistical relevance.

To evaluate the performance of the voice-controlled chatbot system, we conducted
response accuracy testing based on two types of datasets: a manually formed dataset of
predefined, known questions, and an automatically collected dataset of unknown or untrained
questions retrieved through the Google Speech Recognition API. These tests help to assess
the chatbot’s ability to accurately match and respond to both known and unknown user
inputs. We used a manually created corpus of common questions related to Cox's Bazar
International University (CBIU). These questions and their corresponding answers are
directly fed into the system for accurate response matching.

Table VI demonstrates that the system successfully recognized and responded to user
queries despite spelling errors, paraphrased phrasing, or abbreviated expressions within the
predefined query set.

TABLE VI
Known question query response
Questions Response
“full name of CSE” “Computer Science and Engineering”
“Who is current chairman of CSE “Mr. Annandip Barua”

department?”
“founder of cox bazar international | “Lion Mohammed Mujibur Rahman”

university?”’

“Vice-chancellor of CBIU” “Professor Dr. Mohammad Tawhid
Hossain Chowdhury”

“what’s cb university misson?” “The mission of CBIU is to provide
quality education, promote research and
innovation”

To evaluate the system's adaptability beyond predefined datasets, we tested it using
spontaneous general knowledge (GK) questions, captured through the Google Speech
Recognition API. These questions were not included in the system’s local knowledge base,
and the responses were either generated through web-based queries or general-purpose
information retrieval modules integrated into the system. Table VII confirms the system’s
ability to accurately respond to general-purpose voice queries by leveraging online
information sources. Despite occasional variations in phrasing or accent in the speech input,
the robot consistently retrieved accurate and contextually relevant answers.

TABLE VII
Unknown question query response via API
Questions (via API) Response

“What is the capital of “The capital of France is Paris.”
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France?”

“There are seven continents: Asia, Africa,
“How many continents North America, South America, Antarctica,

are there?” Europe, and Australia.”
“Who wrote Hamlet?” “Hamlet was written by William
Shakespeare.”

Fig. 5 Final System Implementation

The system performance experiments validate that the robot performs well with simple
tasks like accepting voice commands, recognizing known faces, and following a map without
guidance. Good accuracy and response time under ideal conditions demonstrate the promise
of real-world applications in smart homes, healthcare, and manufacturing. In intelligent home
environments, Bondhu is a personalized assistant with expert applications like automated
climate and light adjustment based on personal preference, appliance control by voice
accompanied by user authentication, tracking of elderly care for periodic monitoring, and
intelligent security differentiating between family members and others. The autonomous
guidance helps safety assistance, medication, and personalized companionship. In a health
care setting, the system enables patient identification for accessing medical records,
customized medication reminder, mobility assistance for elderly patients, mental health
support through therapeutic conversation, and infection control through autonomous function.
In real-time processing, prompt emergency response is facilitated while facial recognition
protects patient confidentiality through approved access control. Performance under
uncontrolled environments reveals aspects for improvement. Figure 5 illustrates the physical
assembly and component layout of the final robot prototype, highlighting servo placement,
camera positioning, and user interface elements. The use of Al, real-time computation, and
connectivity with 10T already keeps the system at the forefront of robotics today. Yet, further
development in the form of better sensor integration and adaptive algorithms will unlock
more pervasive and scalable applications. The conversation also brushes on the broader
implications of such systems' integration, namely inclusivity (multilingual and accent
support), power efficiency (vital to prolonged use), and privacy/security (a major concern
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with cloud-connected systems). Future advancements must work towards more autonomous,
secure, and human-centered systems.

TABLE VIII
System Accuracy Comparison
System Voice Face Multi-modal Cost Category
Recognition Recognition Integration
Accuracy Accuracy
Bondhu 92% (optimal) / 91% (optimal) / | Yes (Voice + Face | Low cost
Robot 74% 68% +10T)
(challenging) (challenging)
Pepper 89% (optimal) / 85% (optimal) / | Yes (Voice + Face | High-cost
Robot 70% 65% + Emotion)
(challenging) (challenging)
87% (optimal) / N/A (Cloud- Limited (\Voice Cloud-based
Google 65% dependent) only)
Assistant (challenging)
Amazon 85% (optimal) / N/A (Requires Limited (Voice Cloud-based
Alexa SDK | 62% additional only)
(challenging) hardware)
OpenCV N/A (No voice 83% (optimal) / | No (Vision only) | Open-source
Face capability) 58%
Recognition (challenging)
TABLE IX
System Latency and Response Time Comparison
System Command Face Total Network Edge
Processing Recognition Response Dependency | Processing
Latency Latency Time
Bondhu <200ms <150ms <350ms Minimal Yes
Robot (Local (Arduino +
processing) | Mini-
computer)
Pepper 300-400ms 200-300ms 500-700ms Moderate Partial
Robot (Hybrid (Limited
processing) | local Al)
400-800ms N/A 800-1200ms | High (Cloud | No
Google required)
Assistant
Amazon 450-900ms N/A 900-1400ms | High (Cloud | No
Alexa SDK required)
OpenCV N/A 200-400ms 400-600ms Low (Local | Partial
Face processing) | (Vision
Recognition only)

Tables VIII and 1X compare the Bondhu robot's multimodal performance with established
systems such as Google Assistant, Amazon Alexa SDK, and OpenCV-based face recognition.
Google Assistant and Amazon Alexa SDK were chosen because they are the market leaders
in voice recognition systems, providing us with the benchmark for commercial voice
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interaction performance. OpenCV Face Recognition was chosen since it is the most used
open-source computer vision library for facial recognition application in robots and therefore
is a suitable benchmark for vision-based functionality. However, these systems provide
primarily single-modal interaction and do not leverage the multimodal integrated method that
Bondhu presents. In order to provide a fuller evaluation, we add comparison against Pepper
Robot by SoftBank Robotics [27], a state-of-the-art commercial humanoid robot with similar
multimodal capabilities. Pepper has voice recognition, facial detection, emotion detection,
and self-driving capability and thus is the appropriate benchmark for integrated robotic
systems. Bondhu achieves competitive performance against Pepper Robot while maintaining
significantly lower latency and cost. Bondhu outperforms Google Assistant, Alexa, and
OpenCV-based systems by achieving higher voice (92%) and face recognition (91%)
accuracy under optimal conditions and maintaining reasonable performance in challenging
environments. Unlike cloud-dependent alternatives, Bondhu offers full multimodal
integration (voice, face, and IoT) with low latency (<350 ms) through local processing on
Arduino and a mini-computer, making it ideal for real-time, privacy-conscious robotic
applications.

The proposed system addresses privacy concerns by avoiding permanent storage of raw
facial images and instead utilizing compact, non-reversible 128-dimensional embeddings. All
biometric data is stored locally on encrypted storage, and facial enroliment requires explicit
voice-confirmed consent.

V. CONCLUSIONS

The implementation of Bondhu, an loT-enabled humanoid robot with real-time voice
control and face recognition through artificial intelligence, embedded systems, and human-
robot interaction, is a huge step in merging these disciplines. With a modular design centered
around the Arduino UNO and an edge-based mini-computer, the system was able to
demonstrate personalized interaction, real-time command execution, and audio-visual
feedback through the fusion of speech recognition and computer vision. Its sensing,
processing, communication, and actuation layers being distinct facilitated its stability,
responsiveness, and maintainability. While it was able to accomplish well the task of greeting
a user, handshakes, and response to conversation, performance was deteriorated in noisy
areas and low light. Computational limit of the Arduino UNO is also a limiting factor when
scaling the system to achieve more complicated tasks or autonomous navigation. These
results indicate areas of improvement in particular, including improved voice recognition
under noise, more robust facial recognition software, and hardware scalability for extended
applications. Upgrades in the future will target improving the tolerance of voice recognition
via filtering of noise and natural language understanding and improving the accuracy of face
recognition via depth sensing and adaptive learning models trained on the user. The inclusion
of extra microcontrollers or Al edge boards such as ESP32 or NVIDIA Jetson Nano will
support advanced features such as parallel multi-sensor processing and navigation using
SLAM-based methods. Additionally, attention will be paid towards energy efficiency,
privacy-protecting data handling, and universal design for usability regardless of the user
populations. Subsequent generations can also incorporate emotion detection for improved
social interaction, context-sensitive actions to deliver more natural responses, and cloud-robot
collaboration to transfer processing-intensive tasks and enable remote monitoring or
assistance. In addition, the inclusion of reinforcement learning can allow the robot to acquire
experience to modify response based on dynamic settings or user requirements. In real-world
deployment scenarios, safeguards such as data minimization, access controls, audit trails, and
compliance with data protection regulations (e.g., GDPR) will be integrated. Additionally,
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users will have the ability to review and delete their stored profiles, ensuring transparency,
autonomy, and trust in human-robot interactions.
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